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General Oscillator Characterization Using Linear
Open-LoopS-Parameters

Mitch Randall and Terry HockMember, IEEE

Abstract—From a practical standpoint, oscillator design using It can be applied using only standard network analysis software,
linear open-loop S-parameters is attractive to designers due to which is ubiquitous in the RF engineering community.

the ease of use and widespread availability_of linea&-parameter- However, the use of, directly for characterization is not
based analysis software. However, the easiest and, therefore, most ’

common approach is based on intuition and rules of thumb. The exact. For example, the frequency at which the _pha_‘SSQQf

intent of this paper is to obtain quantitative expressions that char- Crosses zero is not generally the frequency of oscillation. These
acterize oscillator performance in terms of the linear open-loop differences are due to the difference between the terminating im-
S-parameters. A characteristic equation is derived that determines  pedances used for analysis, and the impedances presented when
oscillator stability. The Nyquist stability criteria can be applied to the loop is closed.

this equation directly from the open-loop Bode plot. A closed-loop Th f thi is 1 id . d
gain parameter is derived, which describes how the open-loop cir- e_ purpose o IS paper Is 1o proyl € expressions an
cuit self-connects. From this parameter, the startup time, oscilla- t€chniques that can be used to better interpret the results of
tion frequency, and loaded@ can be predicted. A prediction of open-loopS-parameter analysis for oscillator design. The full
actual oscillation frequency can be made based on a simple oscil-form of the expressions offers insight into the origin of many of
lator model with known saturation characteristics. It will be shown the rules of thumb commonly used in practice. These common
under what conditions these expressions simplify to more readily techni db f thei N d intuiti
applicable forms. In many cases, the designer can adjust analysis ec n'que_s are l“!se ecause 0 . eir convenience and inturtive
parameters to allow the use of the simplified expressions. nature. With their formal derivation revealed, these rules can
be applied with greater accuracy. These tools augment the
virtual-ground method, resulting in an accurate and widely
applicable oscillator design technique.

We start by formally analyzing the closed-loop response of a

. INTRODUCTION general network to obtain a characteristic equation. The Nyquist

NE METHOD of designing and analyzing an oscillatof€St can be applied to the Bode plot of the characteristic equa-

O is to consider it as a closed-loop circuit composed of diPn- This closely resembles the practice of designing for greater
amplifier and a tuned network. A technique called “transmighan unity gain at the phase zero crossing. However, the for-
sion analysis using virtual ground” [1] allows this method to bEality includes additional rules that reveal the limitations of the
readily applied to almost any oscillator in a straightforward waff?oré common practice.
This approach is advantageous over techniques such as negﬁ» simple feedback oscillator model is described that is as-
tive resistance [2]—[4], closed-loop analysis [5], open-loop Bodé/Mmed to model a general oscillator. The characteristics of the
p|0t5 [6]' non|inea|5’-parameters [7]’ and numerous other Varim0d8| are readlly Computed and serve as a reference. We then
ations that can be difficult to apply, or difficult to interpret, ointroduce a paramete¥, which represents the gain of a general
both. network when it is self-terminated. It is found th@tis gov-

The virtual-ground technique calls for redefining a virtuagrned by the same characteristic equation derived earlier. We
ground in an oscillator circuit such that the amplifier and tune¥f® that applying- to the model oscillator accurately reveals

network can be identified. Once the feedback mechanismigPehavior. The full technique for analyzing an open-loop net-
identified, the loop is opened to create a two-port networkork is then detailed. We then discuss practical approximations

Closed-loop oscillator performance, i.e., frequency, gathatcanbe used and the various conditions under which they are
margin, and loaded), is inferred from the magnitude, phaseYalid. The technique is applied to a practical oscillator and the
and group delay of the forward scattering paramsterof the "ésults are compared to a SPICE simulation.

open-loop network. The virtual-ground approach can uncover

the underlying operational principle of an oscillator that may Il. OSCILLATOR STABILITY

not be obvious in the original circuit; the intuition gained could It has been shown that excess gain at the phase Zero Crossing
inspire a new generation of optimized designs. In addition, M®necessary, but not sufficient to guarantee oscillations [8], [9].
specialized software tools are required to apply this techniqugowever, the Nyquist criteria from classical control theory can
be used to uniquely determine stability. Nguyen and Meyer [9]
provide an excellent description of the issues involved as they
Manuscript received July 14, 1999; revised September 18, 2000. This wéglate to high-frequency oscillators. Here, we extend this tech-
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Fig. 1. Oscillator network with source. The characteristic equation and,
therefore, stability of the network, is determined by considering the transfer 0
function of the oscillator with an artificial current source. 04B 0
by analyzing the response of the network when connected as &
shown in Fig. 1. UsingZ-parameters, it can be easily shown PHASE
that the transfer characteristic is given by

_ (@

IO Zf T %
I zi—z—zp+2,

This can be rewritten in terms ¢f-parameters as [10]

I, S22 — 811+ 255 — 512521 + 511522 — 1

I~ 1—(Si2+ So1 — Si2801 + S1182)
We are not so much interested in the transfer function as in the
resulting characteristic equation since, in practice, the driving vas R
current source is set to zero. The characteristic equation is U

1 — (8124 So1 — 512521 + S11520) = 0.

It is interesting to note that since the characteristic equation de-
rived makes no assumptions about the nature of the oscillations,
it is also applicable to negative resistance oscillator analysis. In (b)

that caseS1» and.S;» are zero and the equation reduces to theg. 2. Comparison of Bode plot and Nyquist diagram. (a) A typical oscillator
familiar form S12Ss; = 1. has a single phase zero crossing with negative slope and positive gain. (b) The

. L . _.same response is shown in polar coordinates (a Nyquist diagram).
We can now apply the Nyquist criteria to the characteristic P P (aNya gram)

equation to determine stability and guarantee oscillator startup.
As a reminder, the Nyquist criteria for oscillation states that the Ill. OSCILLATOR STARTUP

polar open-loop response and its image must make at least ong simple interpretation of the open-loop characteristics al-
net clockwise encirclement of the poihtt 0 as frequency is |ows the startup time to be estimated. In addition, this interpre-
increased. A more concise description with examples can fgion helps to explain the underlying reason why the sign of the
found in any of a number of control theory textbooks such ahase slope plays a critical role in stability.

[11]. Consider an open-loop network of an oscillator at the fre-

The Nyquist diagram, which is just the open-loop responggiency of the phase zero crossing with gainG, and a given

plOtIEd in p0|ar Coordinates, is the most convenient format ﬂﬁne deiayr_ To close the |Oop isto impose the boundary condi-
check for encirclement. The Bode plot contains this same ifion that the output be equal to the input. Assuming the solution

formation, but in Cartesian coordinates. Therefore, in prlnCIplg, an exponentia”y increasing sine wave, and equating input and
the Nyquist criteria can be applied equally well to the Bode plagutput, we have

This form is less convenient in the most general case. However,
in almost all practical oscillators, itis easy to use athe Bode plot  ¢** sin(wgt) = Goe® ™ sin (wy(t — 7) + 6).
to check the Nyquist criteria at a glance.

On the Bode plot, “encirclement” is as follows. When the loyVe focus on the oscillation frequency, which occurs at the phase
magnitude gain is positive at the phase crossing, negative phage crossing. The phase zero crossing impliesfssuch that
slope corresponds to clockwise rotation; positive phase slojpe following condition is satisfied:
corresponds to counterclockwise rotation. When the gain is neg-
ative, those directions are reversed. For oscillation, clockwise sin(wgt) = sin (wg(t — ) +6).
phase zero crossings must outhumber counterclockwise phase _ ) ) )
zero crossings. For the vast majority of oscillators, there is ony'€r€fore, the exponentially growing sine function solves the
one phase zero crossing and it has negative slope (see Fig. 2ydHndary conditions provided
this case, the formal Nyquist test simplifies to the common prac- 1
tice of designing for positive gain at the phase zero crossing. a== In Go.
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Fig. 3. Infinite chain of identical networks. The ratio of the forwayd and

reverse ) waves is identical at each junction, but the amplitude of the waves wo

increases by a factor of with each network.

-

In other words, after a delayand a gairGy, the input will equal @) (b)

the output. In this context, the time d6|ay can be approximat |cgj 4. Equivalent networks. (a) Any network can be decomposed into the sum

by the group delaYH’ which is defined as the phase slope [12 f (b) two series networks. In the steady state, no current will flow thratigh

The 10-90 rise time can, therefore, be estimated as and, therefore, it can be neglected.
o 9191 191 9p where
111 GO g GOdB g GOdB 8w 7f
where G, is the open-loop gain expressed in decibels. The 9= Zi+ 2o

relationship between the group delay and the phase slope shedsy this form, it is seen that has the virtue of being inde-
light on its importance in the Nyquist criterion. A negative phasﬁ'endent of the test-set normalizing impedance.

slope corresponds to atime delay. If the gain is positive and therey simplification occurs if the reverse impedance parameter

is a time delay, an exponentially increasing sine wave solves ¥ane network is zero. A general open-loop oscillator network
boundary conditions. On the other hand, a positive phase slgpg, a\ways be transformed in such a way to allow this simplifi-
corresponds to a time advance. If the gain is positive and thetg;, by the following argument. A general network can be rep-

is atime advance, an exponentialigcreasingsine wave solves resented by the series combination of two networks, as shown
the boundary conditions, implying stability at that frequency. j, Fig. 4, such that

IV. CHARACTERIZING OSCILLATOR OPEN-LOOP BEHAVIOR Z=z+27z"

To correctly characterize a closed-loop network using thghereZ is the impedance matrix of the general network, Zhd
open-loop behavior, the effects of the impedance mismatchadld Z” are the impedance matrices of the transformed network
the connection point must be included. To do this, we considgid the lumped impedance element, respectively. It is evident
the behavior of an infinite number of identical open-loop nethat when the combined network is connected as an oscillator as
works connected end to end, as shown in Fig. 3. The reflectighown (i.e., the input is connected to the output), no current will
coefficients will be identical at each jUnCtion. However, thﬁow through the |umped impedance element. Operation of the
signal at one junction will differ from the signal at an adjacemiscillator is, therefore, independent of the lumped impedance
junction by some gain and phase. Using transfer scatterig@mentz”. The value of the lumped impedance element can

parameters, this set of conditions can be stated as be chosen such that the transformed netwdtlas a reverse
transfer impedance of zero. The transformed network is then
T, Tz || 7| _ Al given by
Toy T || f| | f

Z' =

Zi — Zp 0
wheref andr are the forward and reflected wave variables, re- Zf —Zp Zo— Zr] ’
spectively, at each junction, ands the ratio of the signal at one L _
junction to the signal at an adjacent junction. This is recogniz&®sed on the network’, G is then given by

as an eigenvalue equatiokhican take on two eigenvalues given Gege 2=
by I P
A 1 (Tii+Th2) £ /(T +T2)2 — 4111 Too —T12T51) Expressed in terms df-parameters
G 2 ' Sa1 — Stz
G= .
The two eigenvalues represent possible right- and left-moving 1 = 511522 4 5125921 — 2512

waves. Feedback oscillators are predominantly built aroundzgspecial condition of interest arises when the open-loop gain
unilateral device so one mode corresponds to an exponentidiitakes on a value of one at some point in the complex plane.
increasing signal and the other corresponds to an exponentigliis operating point satisfies the boundary conditions imposed
decaying signal. We, therefore, discard the minus sign from fujy a closed loop. Specifically, at this point, the input is equal to
ther analysis. The eigenvaluecan be interpreted as the recipthe output. From classical control theory, this point corresponds
rocal of the forward open-loop gadi. In terms ofZ-parameters to a pole in the closed-loop transfer function. The condition that

9 G = 1 is satisfied whenever
g

G =
L+ /1 —4(2/25)g? 1 —(S12 + Sa21 — S12521 + S11522) =0
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verify the accuracy of the parameter against the known model
performance. For the model oscillator, the expressiod:fig

iw(wy, /Qn)Act?
Wi — w? +iw(wn/Qn)’
This expression is recognized as the canonical second-order

. . b .
Fig. 5. Model oscillator. It is assumed that an oscillator can be modeled ggndpass response with a gamﬁ_kﬁ - The frequency at which
an amplifier and a single tuned network. The split point used in the analysisike angle of7 crosses zero is given by

shown.
Wo = Wn <thQ(¢) +a/1+ ta;;(f))

@ich is precisely the oscillation frequency as determined for
model. The gain at this frequency is

G:

which is just the characteristic equation from the eaiepa-
rameter analysis. In other words, the open-loop gadtescribes
the poles of a single closed-loop network in agreement with t| X
earlier Z-parameter analysis. It is, therefore, possible and cotn-
venient to determine stability by applying the Nyquist criteria Go = Acos(¢) = m(Aeiqb).
directly to the paramete®.

This result indicates that, in this example, only the real part of

V. FEEDBACK OSCILLATOR MODEL the amplifier gain contributes to the effective loop gain.

The loaded? is computed by considering the phase slope at

In order to predict oscillator performance and compare resUgs frequency [12], which is related to the group delay by
against a standard, we introduce a simple oscillator model, as

shown in Fig. 5. We postulate that at the frequency of oscillation, Q= _lwoaﬁ _ lwotd-

a typical resonator is well approximated byla@ tank. At this 2 0w 2

frequency, the nonresonant part of the network is lumped intoApplying this to the expression fa# gives

the gain and phase of an amplifide’?, where A and ¢ are

real numbers. The network is assumed to have negligible gain ¢ = &Qn cos® ¢ — 15111(2(7)) ~ &Qn cos? .

in the reverse direction. This model will serve as a reference by “n 4 “n

which to validate the accuracy of parameters computed with thes seen that the computeglis lower than the resonata,, by

parametelG. a factor that depends on the phase offset. For moderate values
Using the Z-parameter derivation above, the closed-loogf (),,, the factor is closely approximated bys? ().

transfer function of the network is given by

VII. EXAMPLE

L wy + iw(wn/Qn)(l - Aew) A practical oscillator is considered for analysis using the pa-
I w2 —w?y iw(wn/Qn)(l — Aei¢) rameter and the virtual-ground technique. This example will
serve to illustrate the general analysis procedure. The numerical
where®,, = w,RC andw? = 1/LC results obtained will later be compared with a SPICE simulation

A practical oscillator must have an open-loop gain greates a test of validity.
than unity to guarantee reliable starting. In the steady state, thd he general procedure is as follows. The oscillator schematic
oscillator saturates so that the gain is exactly unity. In this modé, recast by choosing a new virtual ground for the equivalent
saturation is assumed to affect the gdinbut not the phase, ac network. The loop is then broken in an appropriate place to
which is assumed to remain fixed. Given this, in steady sthte form a two-port network for analysis. The parameteis com-
then saturates to a value @f:(¢) at a frequency puted from the resulting-parameter characterization. Fram
oscillation frequency, stability, startup time, and loadg¢dan
be predicted.
v = o <tan(¢) v dig tan2(¢)> . The virtual-ground technique is to be applied to the Collpits

2Q, 4Q2 oscillator shown in Fig. 6. A full discussion of the virtual-ground
technique is beyond the scope of this paper. Very generally, the
Itis evident that the center frequency differs from the naturalrtual-ground point is typically chosen to arrive at a network
frequency by a factor that is dependent on the nonresonant phtass most resembles a cascaded amplifier and tuned circuit, and
shift ¢. This effect is least fopp = 0 and grows rapidly beyond to minimize the reverse transmission coefficiefitp. These
some angle depending @n,. For moderate values @},,, this two goals have been empirically found to best illuminate the
breakpoint is beyoné ~ 60°. fundamental mechanism underlying the operation of the oscil-
lator being studied. Often this amounts to choosing the emitter
or source of the active device as the virtual-ground point and
lumping all of the passive components together as the resonant
We are now in a position to use the expressionddo probe network. However, the results obtained by this technique are in-
the characteristics of the oscillator model. This will allow us tdependent of the split point chosen. Therefore, a well-chosen

VI. ANALYZING THE MODEL WITH THE PARAMETER &G
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Fig. 6. Example oscillator. A Collpits oscillator based on a bipolar device with collector-coupled output is used as an example. The schematidesaldon i
SPICE simulation. However, before applying the virtual-ground technique, the circuit operation is arguably not intuitively obvious at first sight
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Fig. 7. Virtual-ground network for example oscillator. The example oscillator is redrawn in its equivalent ac form with the ground point defnechititethof

Q1. In this example, the split point was chosen to point out the shortcoming§is,afather than to enhance intuition as is typically done. However, this does not
affect the outcome sind@ is independent of the split point.

split point is not required for accurate modeling. To illustratby a term proportional t63, , which, by design, will not be neg-
this, the example oscillator was split at a less intuitive poirligible. Therefore, the first-order term is negligible onlydf.

The resulting virtual-ground network is shown in Fig. 7.

is small. Both of these conditions can sometimes be met with

The forward scattering paramet&s; of the virtual-ground the proper choice of normalizing impedance and split point. If
network has typically been used to deduce oscillator perfae, S2; alone can be used to determine oscillator performance.

mance with some success. The reason for this success is thak |inear simulation is now performed to determine tha-

under certain conditionsy,; closely approximate&:. It is in-

rameters of the open-loop virtual-ground network of Fig. 7.

teresting to examine the origins of this approximation to bettgfom this, the magnitude and phase®is computed as shown

understand its limitations. We start by expandintp first order

in S12 as follows:

roth-order term contains a factor that multipligs . This factor

(S21 —2)S21 — (1 — S11522)

in Fig. 8.

There are two phase zero crossings in the Bode plot. The

(1 — S11522)?

first phase zero crossing occurs with negative slope and posi-
tive gain. The second occurs with positive slope, but negative

gain. This corresponds to one net clockwise encirclement of the
Two effects seen from this approximation are primarily repoint 1 4+ 50. This indicates, according to the Nyquist criteria,
sponsible for inaccuracies caused when usincalone. The ze- that the closed-loop network will oscillate. From the intuitive

arguments made earlier regarding startup time, we can deduce

approaches one when either or bsth andSs, are small. How- that the oscillations will be at the frequency of the negative slope

ever, if their product is not negligibles>; may differ signifi-

phase crossing. The positive slope phase crossing will not sup-

cantly from. Second, the first-order coefficient is dominategbort oscillations since the gain is less than one at that frequency.
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Fig. 8. G: linear simulation. The magnitude and phaseCbfis plotted as

a function of frequency near th_e phase zero cro_ssin_g for the virtual-grotig%. 10. Transient SPICE simulation. The output of the transient analysis for
network. Two phase zero crossings occur, but with different slopes (see example oscillator is shown. The exponential growth was extrapolated for

for interpretation). comparison with the theoretical prediction.
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Fig. 9. S2;: linear simulation. The magnitude and phaseSef is plotted Time (nsec)

as a function of frequency near the phase zero crossing for the virtual-ground

network. Note thatS,; does not exhibit a phase zero crossing; thereforgsig 11. Steady-state SPICE simulation. A steady-state region of the transient

incorrectly indicating that the circuit would not oscillate. analysis for the example oscillator is shown. Frequency was determined by
measuring the period of ten cycles.

From the figure, it can be seen that the frequency of the neg-
ative slope phase zero crossing is 201 MHz. The time delay at TABLE |

that zero crossing is 39.1 nS and the gain is 7.4 dB. This lede®/PARISON OFRESULTS OFANALYSIS USINGG, S21(NORMALIZED T0 5012),
AND SPICE SMULATION . IN THIS EXAMPLE, .S2; PREDICTS NOOSCILLATIONS.

t_o an estimated 10-90 rise time of 100 ns. The loaged es- THE PREDICTIONS OF THESPICE SMULATION MATCHES WELL WITH
timated at 24.7. THAT OBTAINED FROM G

In this caseS»; proves to be an extremely poor approxima- SFIC e
tion to G as can be seen in Fig. 9. In fact, frafs;, one would E Sz
deduce that the network would not oscillate. Frequency | 200 MHz 201 MHz INVALID

VIIl. V ERIFICATION Startup time 134ns 100ns INVALID

To verify the accuracy of the technique, a SPICE simulation Loaded Q - 247 INVALID
was performed on the example_ oscnlato_r cwcwlt of Flg. 6. The G - T4 dB INVALID
S-parameters of the active device used in the linear simulation

were generated using the SPICE model to ensure a consistent
basis for comparison.

Startup time was determined from the SPICE simulation lgraph of Fig. 11. The simulation indicated oscillations at a fre-
direct measurement of the transient time-domain responsegoincy of 200 MHz. Measurement of the loadgavas not ad-
the circuit. The output of the transient simulation is shown idressed with the SPICE simulation.
Fig. 10. From this graph, the 10-90 rise time was measuredThe time step used for the simulation was selected to ensure
as 134 ns. Since nonlinearities cause the exponentially growexgcuracy by the following method. The time resolution was in-
signal to eventually stabilize, the envelope was extrapolated,asased in successive simulations. The results of each simula-
shown in order to measure the 90% time. The frequency of dgn were compared. It was found that the results converged to
cillation was determined by counting cycles in the steady-stadinal value beyond a particular resolution. The time step was
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chosen to be just beyond this point and it is assumed that higheje] D. E. Philips, “Computations of oscillator open-loop bode plots 4%th
[7] R. D. Martinez and R. C. Compton, “A general approach for3hpa-
rameter design of oscillators with 1- and 2-port active devicH=EE
IX. CONCLUSION Trans. Microwave Theory Teghvol. 40, pp. 569-574, Mar. 1992.
. [8] R. W. Jackson, “Criteria for the onset of oscillation in microwave cir-
A parameterG was derived that can be used to accurately ~ cuits,”[EEE Trans. Microwave Theory Teckol. 40, pp. 566569, Mar.
predict the performance of an oscillator in conjunction with 1992.

. _ . : ] N. M. Nguyen and R. G. Meyer, “Start-up and frequency stability in
the virtual ground teChquG can be eXpressed in terms of high-frequency oscillators,l[EEE J. Solid-State Circuifsvol. 27, pp.

S-parameters resulting from a linear simulation of the two-port  810-820, May 1992.
open-loop oscillator network. The parameter was shown to obely0] R. S. Carsoniigh-Frequency Amplifiers New York: Wiley, 1982, p.

ot ; . - 200.
the same characteristic equation as derived through circuit anEHL-l] 3. 3. D'Azz0 and C. H. Houpid.inear Control System Analysis and

ysis. Therefore, the Nyquist criteria can be applied:tto pre- Design New York: McGraw-Hill, 1981, pp. 283-300.
cisely determine oscillator stability. The oscillator performanced2] R. W. RheaOscillator Design & Computer Simulation Englewood
: . . Cliffs, NJ: Prentice-Hall, 1990, p. 47.

characterized by7 was analytically shown to match a simple
oscillator model.

An example oscillator was analyzed using the virtual-ground
technique with the parametét and a SPICE simulation. The
excellent agreement between the methods validates the thegfin randall received the B.S.E.E. degree from lowa State University, Ames,

In addition, the example points out the limitations of usitg in 1984, the M.S.E.E. degree and M.S. degree in physics from the University of
in the virtual-ground technique. Colorado, Boulder, in 1989 and 2000, respectively, and is currently working
. . . toward the Ph.D. degree in physics at the University of Colorado.

The results of both anaIyS|S technlques are summarized ince 1989, he has been with the National Center for Atmospheric Research,
Table I. Boulder, CO, where his focus has primarily been on atmospheric remote-sensing
instruments. He holds several patents spanning a range of topics, including an-
tennas, signal processors, and high-power RF amplifiers.

REFERENCES
[1] S.Alechno, “Analysis method characterizes microwave oscillatdfs,”
crowaves RFvol. 36, no. 11, pp. 82-86, Nov. 1997.
[2] D.J. Esdale and M. J. Howes, “A reflection coefficient approach to the
design of one-port negative impedance oscillatot8EE Trans. Mi-
crowave Theory Techvol. MTT-29, no. 8, pp. 770-776, Aug. 1981. Terry Hock (S'81-M'81) received the B.S. and M.S. degrees in electrical en-
[3] G. strid, “S-parameters simplify accurate VCO desigMicrowaves gineering from the University of Colorado, Boulder.
vol. 14, no. 5, pp. 34-40, May 1975. Since 1982, he has been a Research and Development Engineer at the Na-
[4] W. El-Kamali, J. Grimm, R. Meierer, and C. Tsironis, “New design aptional Center for Atmospheric Research (NCAR), Boulder, CO. He is also the
proach for wide-band FET voltage-controlled oscillatof&EE Trans. Head of the Sounding Group, which develops balloon born instruments, and
Microwave Theory Techvol. MTT-34, pp. 1059-1063, Oct. 1986. dropsondes for hurricane research. His research interests include frequency syn-
[5] B. Parzen, “Universal, computer facilitated, steady state oscillatdhesizers, low-phase-noise voltage-controlled oscillators (VCOs), and wireless
closed loop analysis,” iIHEEE Int. Freq. Contr. Symp.1996, pp. RF system design. He holds one patent for a balloon tracking antenna system.
912-919. Mr. Hock was the recipient of three NCAR Technical Achievement Awards.



	MTT023
	Return to Contents


