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General Oscillator Characterization Using Linear
Open-LoopS-Parameters

Mitch Randall and Terry Hock, Member, IEEE

Abstract—From a practical standpoint, oscillator design using
linear open-loop -parameters is attractive to designers due to
the ease of use and widespread availability of linear -parameter-
based analysis software. However, the easiest and, therefore, most
common approach is based on intuition and rules of thumb. The
intent of this paper is to obtain quantitative expressions that char-
acterize oscillator performance in terms of the linear open-loop

-parameters. A characteristic equation is derived that determines
oscillator stability. The Nyquist stability criteria can be applied to
this equation directly from the open-loop Bode plot. A closed-loop
gain parameter is derived, which describes how the open-loop cir-
cuit self-connects. From this parameter, the startup time, oscilla-
tion frequency, and loaded can be predicted. A prediction of
actual oscillation frequency can be made based on a simple oscil-
lator model with known saturation characteristics. It will be shown
under what conditions these expressions simplify to more readily
applicable forms. In many cases, the designer can adjust analysis
parameters to allow the use of the simplified expressions.

Index Terms—Analysis, closed-loop gain, linear design, oscil-
lator, oscillator stability, -parameters.

I. INTRODUCTION

ONE METHOD of designing and analyzing an oscillator
is to consider it as a closed-loop circuit composed of an

amplifier and a tuned network. A technique called “transmis-
sion analysis using virtual ground” [1] allows this method to be
readily applied to almost any oscillator in a straightforward way.
This approach is advantageous over techniques such as nega-
tive resistance [2]–[4], closed-loop analysis [5], open-loop Bode
plots [6], nonlinear -parameters [7], and numerous other vari-
ations that can be difficult to apply, or difficult to interpret, or
both.

The virtual-ground technique calls for redefining a virtual
ground in an oscillator circuit such that the amplifier and tuned
network can be identified. Once the feedback mechanism is
identified, the loop is opened to create a two-port network.
Closed-loop oscillator performance, i.e., frequency, gain
margin, and loaded , is inferred from the magnitude, phase,
and group delay of the forward scattering parameterof the
open-loop network. The virtual-ground approach can uncover
the underlying operational principle of an oscillator that may
not be obvious in the original circuit; the intuition gained could
inspire a new generation of optimized designs. In addition, no
specialized software tools are required to apply this technique.
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It can be applied using only standard network analysis software,
which is ubiquitous in the RF engineering community.

However, the use of directly for characterization is not
exact. For example, the frequency at which the phase of
crosses zero is not generally the frequency of oscillation. These
differences are due to the difference between the terminating im-
pedances used for analysis, and the impedances presented when
the loop is closed.

The purpose of this paper is to provide expressions and
techniques that can be used to better interpret the results of
open-loop -parameter analysis for oscillator design. The full
form of the expressions offers insight into the origin of many of
the rules of thumb commonly used in practice. These common
techniques are used because of their convenience and intuitive
nature. With their formal derivation revealed, these rules can
be applied with greater accuracy. These tools augment the
virtual-ground method, resulting in an accurate and widely
applicable oscillator design technique.

We start by formally analyzing the closed-loop response of a
general network to obtain a characteristic equation. The Nyquist
test can be applied to the Bode plot of the characteristic equa-
tion. This closely resembles the practice of designing for greater
than unity gain at the phase zero crossing. However, the for-
mality includes additional rules that reveal the limitations of the
more common practice.

A simple feedback oscillator model is described that is as-
sumed to model a general oscillator. The characteristics of the
model are readily computed and serve as a reference. We then
introduce a parameter, which represents the gain of a general
network when it is self-terminated. It is found that is gov-
erned by the same characteristic equation derived earlier. We
see that applying to the model oscillator accurately reveals
its behavior. The full technique for analyzing an open-loop net-
work is then detailed. We then discuss practical approximations
that can be used and the various conditions under which they are
valid. The technique is applied to a practical oscillator and the
results are compared to a SPICE simulation.

II. OSCILLATOR STABILITY

It has been shown that excess gain at the phase zero crossing
is necessary, but not sufficient to guarantee oscillations [8], [9].
However, the Nyquist criteria from classical control theory can
be used to uniquely determine stability. Nguyen and Meyer [9]
provide an excellent description of the issues involved as they
relate to high-frequency oscillators. Here, we extend this tech-
nique for use with linear two-port-parameter analysis.

Any oscillator can be decomposed into a two-port network
connected closed loop. We can investigate the startup stability
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Fig. 1. Oscillator network with source. The characteristic equation and,
therefore, stability of the network, is determined by considering the transfer
function of the oscillator with an artificial current source.

by analyzing the response of the network when connected as
shown in Fig. 1. Using -parameters, it can be easily shown
that the transfer characteristic is given by

This can be rewritten in terms of-parameters as [10]

We are not so much interested in the transfer function as in the
resulting characteristic equation since, in practice, the driving
current source is set to zero. The characteristic equation is

It is interesting to note that since the characteristic equation de-
rived makes no assumptions about the nature of the oscillations,
it is also applicable to negative resistance oscillator analysis. In
that case, and are zero and the equation reduces to the
familiar form .

We can now apply the Nyquist criteria to the characteristic
equation to determine stability and guarantee oscillator startup.
As a reminder, the Nyquist criteria for oscillation states that the
polar open-loop response and its image must make at least one
net clockwise encirclement of the point as frequency is
increased. A more concise description with examples can be
found in any of a number of control theory textbooks such as
[11].

The Nyquist diagram, which is just the open-loop response
plotted in polar coordinates, is the most convenient format to
check for encirclement. The Bode plot contains this same in-
formation, but in Cartesian coordinates. Therefore, in principle,
the Nyquist criteria can be applied equally well to the Bode plot.
This form is less convenient in the most general case. However,
in almost all practical oscillators, it is easy to use a the Bode plot
to check the Nyquist criteria at a glance.

On the Bode plot, “encirclement” is as follows. When the log
magnitude gain is positive at the phase crossing, negative phase
slope corresponds to clockwise rotation; positive phase slope
corresponds to counterclockwise rotation. When the gain is neg-
ative, those directions are reversed. For oscillation, clockwise
phase zero crossings must outnumber counterclockwise phase
zero crossings. For the vast majority of oscillators, there is only
one phase zero crossing and it has negative slope (see Fig. 2). In
this case, the formal Nyquist test simplifies to the common prac-
tice of designing for positive gain at the phase zero crossing.

(a)

(b)

Fig. 2. Comparison of Bode plot and Nyquist diagram. (a) A typical oscillator
has a single phase zero crossing with negative slope and positive gain. (b) The
same response is shown in polar coordinates (a Nyquist diagram).

III. OSCILLATOR STARTUP

A simple interpretation of the open-loop characteristics al-
lows the startup time to be estimated. In addition, this interpre-
tation helps to explain the underlying reason why the sign of the
phase slope plays a critical role in stability.

Consider an open-loop network of an oscillator at the fre-
quency of the phase zero crossing with gain and a given
time delay . To close the loop is to impose the boundary condi-
tion that the output be equal to the input. Assuming the solution
is an exponentially increasing sine wave, and equating input and
output, we have

We focus on the oscillation frequency, which occurs at the phase
zero crossing. The phase zero crossing implies thatis such that
the following condition is satisfied:

Therefore, the exponentially growing sine function solves the
boundary conditions provided
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Fig. 3. Infinite chain of identical networks. The ratio of the forward (f ) and
reverse (r) waves is identical at each junction, but the amplitude of the waves
increases by a factor of� with each network.

In other words, after a delayand a gain , the input will equal
the output. In this context, the time delay can be approximated
by the group delay , which is defined as the phase slope [12].
The 10–90 rise time can, therefore, be estimated as

where is the open-loop gain expressed in decibels. The
relationship between the group delay and the phase slope sheds
light on its importance in the Nyquist criterion. A negative phase
slope corresponds to a time delay. If the gain is positive and there
is a time delay, an exponentially increasing sine wave solves the
boundary conditions. On the other hand, a positive phase slope
corresponds to a time advance. If the gain is positive and there
is a time advance, an exponentiallydecreasingsine wave solves
the boundary conditions, implying stability at that frequency.

IV. CHARACTERIZING OSCILLATOR OPEN-LOOPBEHAVIOR

To correctly characterize a closed-loop network using the
open-loop behavior, the effects of the impedance mismatch at
the connection point must be included. To do this, we consider
the behavior of an infinite number of identical open-loop net-
works connected end to end, as shown in Fig. 3. The reflection
coefficients will be identical at each junction. However, the
signal at one junction will differ from the signal at an adjacent
junction by some gain and phase. Using transfer scattering
parameters, this set of conditions can be stated as

where and are the forward and reflected wave variables, re-
spectively, at each junction, andis the ratio of the signal at one
junction to the signal at an adjacent junction. This is recognized
as an eigenvalue equation.can take on two eigenvalues given
by

The two eigenvalues represent possible right- and left-moving
waves. Feedback oscillators are predominantly built around a
unilateral device so one mode corresponds to an exponentially
increasing signal and the other corresponds to an exponentially
decaying signal. We, therefore, discard the minus sign from fur-
ther analysis. The eigenvaluecan be interpreted as the recip-
rocal of the forward open-loop gain. In terms of -parameters

(a) (b)

Fig. 4. Equivalent networks. (a) Any network can be decomposed into the sum
of (b) two series networks. In the steady state, no current will flow throughZ

and, therefore, it can be neglected.

where

From this form, it is seen that has the virtue of being inde-
pendent of the test-set normalizing impedance.

A simplification occurs if the reverse impedance parameter
of the network is zero. A general open-loop oscillator network
can always be transformed in such a way to allow this simplifi-
cation by the following argument. A general network can be rep-
resented by the series combination of two networks, as shown
in Fig. 4, such that

where is the impedance matrix of the general network, and
and are the impedance matrices of the transformed network
and the lumped impedance element, respectively. It is evident
that when the combined network is connected as an oscillator as
shown (i.e., the input is connected to the output), no current will
flow through the lumped impedance element. Operation of the
oscillator is, therefore, independent of the lumped impedance
element . The value of the lumped impedance element can
be chosen such that the transformed networkhas a reverse
transfer impedance of zero. The transformed network is then
given by

Based on the network , is then given by

Expressed in terms of-parameters

A special condition of interest arises when the open-loop gain
takes on a value of one at some point in the complex plane.

This operating point satisfies the boundary conditions imposed
by a closed loop. Specifically, at this point, the input is equal to
the output. From classical control theory, this point corresponds
to a pole in the closed-loop transfer function. The condition that

is satisfied whenever
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Fig. 5. Model oscillator. It is assumed that an oscillator can be modeled as
an amplifier and a single tuned network. The split point used in the analysis is
shown.

which is just the characteristic equation from the earlier-pa-
rameter analysis. In other words, the open-loop gaindescribes
the poles of a single closed-loop network in agreement with the
earlier -parameter analysis. It is, therefore, possible and con-
venient to determine stability by applying the Nyquist criteria
directly to the parameter .

V. FEEDBACK OSCILLATOR MODEL

In order to predict oscillator performance and compare results
against a standard, we introduce a simple oscillator model, as
shown in Fig. 5. We postulate that at the frequency of oscillation,
a typical resonator is well approximated by anLC tank. At this
frequency, the nonresonant part of the network is lumped into
the gain and phase of an amplifier , where and are
real numbers. The network is assumed to have negligible gain
in the reverse direction. This model will serve as a reference by
which to validate the accuracy of parameters computed with the
parameter .

Using the -parameter derivation above, the closed-loop
transfer function of the network is given by

where and
A practical oscillator must have an open-loop gain greater

than unity to guarantee reliable starting. In the steady state, the
oscillator saturates so that the gain is exactly unity. In this model,
saturation is assumed to affect the gain, but not the phase,
which is assumed to remain fixed. Given this, in steady state,
then saturates to a value of at a frequency

It is evident that the center frequency differs from the natural
frequency by a factor that is dependent on the nonresonant phase
shift . This effect is least for and grows rapidly beyond
some angle depending on . For moderate values of , this
breakpoint is beyond .

VI. A NALYZING THE MODEL WITH THE PARAMETER

We are now in a position to use the expression forto probe
the characteristics of the oscillator model. This will allow us to

verify the accuracy of the parameter against the known model
performance. For the model oscillator, the expression foris

This expression is recognized as the canonical second-order
bandpass response with a gain of . The frequency at which
the angle of crosses zero is given by

which is precisely the oscillation frequency as determined for
the model. The gain at this frequency is

This result indicates that, in this example, only the real part of
the amplifier gain contributes to the effective loop gain.

The loaded is computed by considering the phase slope at
this frequency [12], which is related to the group delay by

Applying this to the expression for gives

It is seen that the computedis lower than the resonator by
a factor that depends on the phase offset. For moderate values
of , the factor is closely approximated by .

VII. EXAMPLE

A practical oscillator is considered for analysis using the pa-
rameter and the virtual-ground technique. This example will
serve to illustrate the general analysis procedure. The numerical
results obtained will later be compared with a SPICE simulation
as a test of validity.

The general procedure is as follows. The oscillator schematic
is recast by choosing a new virtual ground for the equivalent
ac network. The loop is then broken in an appropriate place to
form a two-port network for analysis. The parameteris com-
puted from the resulting-parameter characterization. From,
oscillation frequency, stability, startup time, and loadedcan
be predicted.

The virtual-ground technique is to be applied to the Collpits
oscillator shown in Fig. 6. A full discussion of the virtual-ground
technique is beyond the scope of this paper. Very generally, the
virtual-ground point is typically chosen to arrive at a network
that most resembles a cascaded amplifier and tuned circuit, and
to minimize the reverse transmission coefficient, . These
two goals have been empirically found to best illuminate the
fundamental mechanism underlying the operation of the oscil-
lator being studied. Often this amounts to choosing the emitter
or source of the active device as the virtual-ground point and
lumping all of the passive components together as the resonant
network. However, the results obtained by this technique are in-
dependent of the split point chosen. Therefore, a well-chosen
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Fig. 6. Example oscillator. A Collpits oscillator based on a bipolar device with collector-coupled output is used as an example. The schematic shown is ideal for
SPICE simulation. However, before applying the virtual-ground technique, the circuit operation is arguably not intuitively obvious at first sight.

Fig. 7. Virtual-ground network for example oscillator. The example oscillator is redrawn in its equivalent ac form with the ground point defined at the emitter of
Q1. In this example, the split point was chosen to point out the shortcomings ofS rather than to enhance intuition as is typically done. However, this does not
affect the outcome sinceG is independent of the split point.

split point is not required for accurate modeling. To illustrate
this, the example oscillator was split at a less intuitive point.
The resulting virtual-ground network is shown in Fig. 7.

The forward scattering parameter of the virtual-ground
network has typically been used to deduce oscillator perfor-
mance with some success. The reason for this success is that,
under certain conditions, closely approximates . It is in-
teresting to examine the origins of this approximation to better
understand its limitations. We start by expandingto first order
in as follows:

Two effects seen from this approximation are primarily re-
sponsible for inaccuracies caused when usingalone. The ze-
roth-order term contains a factor that multiplies . This factor
approaches one when either or both and are small. How-
ever, if their product is not negligible, may differ signifi-
cantly from . Second, the first-order coefficient is dominated

by a term proportional to , which, by design, will not be neg-
ligible. Therefore, the first-order term is negligible only if
is small. Both of these conditions can sometimes be met with
the proper choice of normalizing impedance and split point. If
so, alone can be used to determine oscillator performance.

A linear simulation is now performed to determine the-pa-
rameters of the open-loop virtual-ground network of Fig. 7.
From this, the magnitude and phase ofis computed as shown
in Fig. 8.

There are two phase zero crossings in the Bode plot. The
first phase zero crossing occurs with negative slope and posi-
tive gain. The second occurs with positive slope, but negative
gain. This corresponds to one net clockwise encirclement of the
point . This indicates, according to the Nyquist criteria,
that the closed-loop network will oscillate. From the intuitive
arguments made earlier regarding startup time, we can deduce
that the oscillations will be at the frequency of the negative slope
phase crossing. The positive slope phase crossing will not sup-
port oscillations since the gain is less than one at that frequency.
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Fig. 8. G: linear simulation. The magnitude and phase ofG is plotted as
a function of frequency near the phase zero crossing for the virtual-ground
network. Two phase zero crossings occur, but with different slopes (see text
for interpretation).

Fig. 9. S : linear simulation. The magnitude and phase ofS is plotted
as a function of frequency near the phase zero crossing for the virtual-ground
network. Note thatS does not exhibit a phase zero crossing; therefore,
incorrectly indicating that the circuit would not oscillate.

From the figure, it can be seen that the frequency of the neg-
ative slope phase zero crossing is 201 MHz. The time delay at
that zero crossing is 39.1 nS and the gain is 7.4 dB. This leads
to an estimated 10–90 rise time of 100 ns. The loadedis es-
timated at 24.7.

In this case, proves to be an extremely poor approxima-
tion to as can be seen in Fig. 9. In fact, from , one would
deduce that the network would not oscillate.

VIII. V ERIFICATION

To verify the accuracy of the technique, a SPICE simulation
was performed on the example oscillator circuit of Fig. 6. The

-parameters of the active device used in the linear simulation
were generated using the SPICE model to ensure a consistent
basis for comparison.

Startup time was determined from the SPICE simulation by
direct measurement of the transient time-domain response of
the circuit. The output of the transient simulation is shown in
Fig. 10. From this graph, the 10–90 rise time was measured
as 134 ns. Since nonlinearities cause the exponentially growing
signal to eventually stabilize, the envelope was extrapolated, as
shown in order to measure the 90% time. The frequency of os-
cillation was determined by counting cycles in the steady-state

Fig. 10. Transient SPICE simulation. The output of the transient analysis for
the example oscillator is shown. The exponential growth was extrapolated for
comparison with the theoretical prediction.

Fig. 11. Steady-state SPICE simulation. A steady-state region of the transient
analysis for the example oscillator is shown. Frequency was determined by
measuring the period of ten cycles.

TABLE I
COMPARISON OFRESULTS OFANALYSIS USINGG, S (NORMALIZED TO 50
),
AND SPICE SIMULATION . IN THIS EXAMPLE, S PREDICTS NOOSCILLATIONS.

THE PREDICTIONS OF THESPICE SIMULATION MATCHES WELL WITH

THAT OBTAINED FROM G

graph of Fig. 11. The simulation indicated oscillations at a fre-
quency of 200 MHz. Measurement of the loadedwas not ad-
dressed with the SPICE simulation.

The time step used for the simulation was selected to ensure
accuracy by the following method. The time resolution was in-
creased in successive simulations. The results of each simula-
tion were compared. It was found that the results converged to
a final value beyond a particular resolution. The time step was



1100 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 6, JUNE 2001

chosen to be just beyond this point and it is assumed that higher
resolution is unnecessary.

IX. CONCLUSION

A parameter was derived that can be used to accurately
predict the performance of an oscillator in conjunction with
the virtual-ground technique. can be expressed in terms of

-parameters resulting from a linear simulation of the two-port
open-loop oscillator network. The parameter was shown to obey
the same characteristic equation as derived through circuit anal-
ysis. Therefore, the Nyquist criteria can be applied toto pre-
cisely determine oscillator stability. The oscillator performance
characterized by was analytically shown to match a simple
oscillator model.

An example oscillator was analyzed using the virtual-ground
technique with the parameter and a SPICE simulation. The
excellent agreement between the methods validates the theory.
In addition, the example points out the limitations of using
in the virtual-ground technique.

The results of both analysis techniques are summarized in
Table I.
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